22,660 research outputs found

    Use of lightweight composites for GAS payload structures

    Get PDF
    A key element in the design of a small self-contained payload is the supporting structure. This structure must support the experiments and other components while using as little space and weight as possible. Hence, the structure material must have characteristics of being both strong and light. Aluminum was used for the structure on the first Purdue University payload, but consumed a relatively large percentage of the total payload weight. The current payload has a larger power supply requirement than did the previous payload. To allow additional weight for the batteries, a composite material has been chosen for the structure which has the required strength while being considerably lighter than aluminum. A radial fin design has been chosen for ease of composite material lay-up and its overall strength of design. A composite plate will connect the free ends of the fins and add strength and reduce vibration. The physical characteristics of the composite material and the method of open lay-up construction is described. Also discussed are the testing, modifications, and problems encountered during assembly of the experiments to the structure

    The Chamber Chorale

    Full text link
    Program listing performers and works performed

    Variable geometry manned orbital vehicle Patent

    Get PDF
    Variable geometry manned orbital vehicle having high aerodynamic efficiency over wide speed range and incorporating auxiliary pivotal wing

    A study of the local pressure field in turbulent shear flow and its relation to aerodynamic noise generation Semiannual status report, 1 Aug. 1970 - 31 Jan. 1971

    Get PDF
    Relation of Eulerian and Lagrangian structure of pseudosound pressure and velocity fields in turbulent shear flow to aerodynamic noise generatio

    Photon induced secondary electron emission

    Get PDF
    Numerical models for predicting photon-induced secondary electron emission are presented. The results are compared with experimental measurements made using a Co-60 gamma ray source

    Contralateral inhibition of click- and chirp-evoked human compound action potentials

    Get PDF
    Cochlear outer hair cells (OHC) receive direct efferent feedback from the caudal auditory brainstem via the medial olivocochlear (MOC) bundle. This circuit provides the neural substrate for the MOC reflex, which inhibits cochlear amplifier gain and is believed to play a role in listening in noise and protection from acoustic overexposure. The human MOC reflex has been studied extensively using otoacoustic emissions (OAE) paradigms; however, these measurements are insensitive to subsequent “downstream” efferent effects on the neural ensembles that mediate hearing. In this experiment, click- and chirp-evoked auditory nerve compound action potential (CAP) amplitudes were measured electrocochleographically from the human eardrum without and with MOC reflex activation elicited by contralateral broadband noise. We hypothesized that the chirp would be a more optimal stimulus for measuring neural MOC effects because it synchronizes excitation along the entire length of the basilar membrane and thus evokes a more robust CAP than a click at low to moderate stimulus levels. Chirps produced larger CAPs than clicks at all stimulus intensities (50–80 dB ppeSPL). MOC reflex inhibition of CAPs was larger for chirps than clicks at low stimulus levels when quantified both in terms of amplitude reduction and effective attenuation. Effective attenuation was larger for chirp- and click-evoked CAPs than for click-evoked OAEs measured from the same subjects. Our results suggest that the chirp is an optimal stimulus for evoking CAPs at low stimulus intensities and for assessing MOC reflex effects on the auditory nerve. Further, our work supports previous findings that MOC reflex effects at the level of the auditory nerve are underestimated by measures of OAE inhibition

    Comparison of Space Shuttle Orbiter low-speed static stability and control derivatives obtained from wind-tunnel and approach and landing flight tests

    Get PDF
    Tests were conducted in the 8 foot transonic pressure tunnel to obtain wind tunnel data for comparison with static stability and control parameters measured on the space shuttle orbiter approach and landing flight tests. The longitudinal stability, elevon effectiveness, lateral directional stability, and aileron effectiveness derivatives were determined from the wind tunnel data and compared with the flight test results. The comparison covers a range of angles of attack from approximately 2 deg to 10 deg at subsonic Mach numbers of 0.41 to 0.56. In general the wind tunnel results agreed well with the flight test results, indicating the wind tunnel data is applicable to the design of entry vehicles for subsonic speeds over the angle of attack range studied

    I Met My Love \u27Mid The Roses

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5565/thumbnail.jp
    corecore